

CHILDREN'S HEALTHY LIVING (CHL)

CENTER OF EXCELLENCE

SAS Programming Guide

Developed by the CHL Data Work Group for use in the CHL Pacific Region

For further information, please contact: CHL Data Center Children's Healthy Living Center of Excellence Ag Sciences 302, 1955 East West Road, Honolulu, HI 96822 Email: <u>chldata@hawaii.edu</u> Website: <u>www.chl-pacific.org</u>

This project is supported by the Agriculture and Food Research Initiative Grant no. 2021-68012-35899 and Grant no. 2018-69001-27551 from the USDA National Institute of Food and Agricultural Science Enhancement Coordinated Agricultural Program and Grant no. 1P20GM139753-01A1 from the Centers of Biomedical Research Excellence (COBRE).

United States Department of Agriculture National Institute of Food and Agriculture

Background	1
Importing Datasets into SAS	1
Importing Permanent SAS Dataset Files	1
Importing CSV Files	1
Importing Excel Files	1
Dataset Contents	2
Data Steps	3
Creating New Variables	3
Other Dataset Procedures	4
Sorting Data	4
Merging Datasets	4
Removing duplicate observations	4
Frequency Procedures	5
Simple Frequencies	5
Simple Cross Tabulation	6
Complex Tabulation	7
Means Procedures	8
Simple Means	8
Means by specific groups & adjusting for jurisdiction strata & community cluster	9
Statistical Procedures	10
Chi Square Test	10
T Test	11
ANOVA Test or Simple Linear Regression	12
General Linear Regression Models	13
Multiple Linear Regression	13
Multiple Linear Regression accounting for CHL complex sample design	14
Logistic Regression Models	15
Multiple Logistic Regression	15
Multiple Logistic Regression accounting for CHL complex sample design	17
Additional Support	20

Contents

Background

SAS is an integrated software suite for advanced analytics, business intelligence, data management, and predictive analytics. This guide provides basic SAS codes to conduct various data procedures and statistical analyses.

Importing Datasets into SAS

```
*Note: Highlighted shows what you must fill in.
Importing Permanent SAS Dataset Files
libname FolderName "C:\Users\Folder Location";
data DatasetName;
    set FolderName.FileName;
run;
```

<u>Note</u>: *FolderName* & *DatasetName* can be any name you will use in your SAS program. However, *FileName* must be the name of the SAS dataset file you are importing from the folder (copy this file name from your folder location & paste into SAS code).

Example:

```
libname chl "C:\Desktop\User\CHL";
data chldata;
    set chl.chl_final;
run;
```

```
Importing CSV Files
```

```
proc import datafile= "C:\Users\Folder Location\File Name.csv"
    out=DatasetName
    dbms=csv
    replace;
    getnames=yes;
    guessingrows=max;
run;
```

Importing Excel Files

```
proc import datafile= "C:\Users\Folder Location\File Name.xlsx"
    out=DatasetName
    dbms=xlsx
    replace;
    sheet="Sheet1";
    getnames=yes;
    guessingrows=max;
```

run;

Note: DatasetName can be any name that you will use in your SAS program.

Dataset Contents

Check the contents of your imported dataset with the codes below. Contents will include number of observations, names of variables, type of your variables (character vs. numeric), and label of variables (describes what the variable is).

proc contents data=DatasetName; run;

Example:

proc contents data=chldata; run;

Output:

The CONTENTS Procedure										
Data Set Name	WORK.CHLDATA	Observations	5499							
Member Type	DATA	Variables	32							
Engine	V9	Indexes	0							
Created	08/27/2024 15:43:23	Observation Length	296							
Last Modified	08/27/2024 15:43:23	Deleted Observations	0							
Protection		Compressed	NO							
Data Set Type		Sorted	NO							
Label										
Data Representation	WINDOWS_64									
Encoding	wlatin1Western (Windows)									

The SAS System

Engine/Host Dependent Information								
Data Set Page Size	65536							
Number of Data Set Pages	25							
First Data Page	1							
Max Obs per Page	221							
Obs in First Data Page	196							
Number of Data Set Repairs	0							
ExtendObsCounter	YES							
Filename	C:\Us ers\RICADE~1\AppData\Local\Temp\SAS Temporary Files_TD7452_NAP1254_\childata.sas7bdat							
Release Created	9.0401M7							
Host Created	384_10PRO							
Owner Name	NAP1254 Rica Dela Cruz							
File Size	2MB							
File Size (bytes)	1703998							

	Alphabetic List of Variables and Attributes										
#	Variable	Туре	Len	Format	Informat	Label					
1	agegrp	Char	8			ANTHRO: 2-category age group at anthropometry measures (1=2-5 yrs, 2=6-8 yrs)					
16	agemos	Num	8			ANTHRO: Computed participant age in months when anthropometry was measured					
2	bmi_category	Char	20	\$14.		ANTHRO: BMI in 4 categories using CDC 2000 reference					
21	carbohydrate_adjForVar_WTMN	Num	8			FOODLOG Intake for weighted mean across days: Carbohydrate in g, adjusted for within pers on variance					
5	community	Num	8			GENERAL: Community					
32	community_cluster	Num	8			GENERAL: Community for cluster analysis					
22	dietaryfiber_adjForVar_WTMN	Num	8			FOODLOG Intake for weighted mean across days: Dietary Fiber in g, adjusted for within person variance					
18	education	Num	8			DEMO: Highest grade of school respondent completed (1=Never attended, 2=Grades 1-8, 3=Grades 3-11, 4=HS, 5=Some college, 6= 4 year college)					
11	hei1_adjForVar_WTMN	Num	8			FOODLOG Intake for day: Whole Grains in oz, weighted for weekday/weekend days and adjusted for within person variance					
12	hei2_adjForVar_WTMN	Num	8			FOODLOG Intake for day: Vegetables in cups, weighted for weekday/weekend days and adjusted for within person variance					
13	hei3_adjForVar_WTMN	Num	8			FOODLOG Intake for day: Fruit in cups, weighted for weekday/weekend days and adjusted for within person variance					
14	hei4_adjForVar_WTMN	Num	8			FOODLOG Intake for day: Milk in cups, weighted for week day/week end days and adjusted for within person variance					
15	hei5_adjForVar_WTMN	Num	8			FOODLOG Intake for day: Meat in oz, weighted for week day/week end days and adjusted for within person variance					

Data Steps

Data steps revise imported datasets to create new variables, remove specific data observations, remove variables from the imported dataset, change the format of variables (e.g. number to character format).

"Proc Print" statements allow you to view your dataset line by line. You can view the whole

Creating New Variables

```
data NewDatasetName;
    set DatasetName;
if Variable1 = "Original Category 1" then Variable1_New = "New Category Name 1";
else if Variable1 = "Original Category 2" then Variable1_New = "New Category Name 2";
if Variable2 = # then Variable2_New = New#;
else if Variable2 = # then Variable2_New = New#;
else if Variable3 =< # then NewVariable3 = "Description";
else if # =< Variable3 =< # then NewVariable3 = "Description";
else if # =< Variable3 =< # then NewVariable3 = "Description";
variable3 = NewDatasetName (obs=# observations);
Var id Variable1_NewVariable1_Variable2_NewVariable2;
```

run;

<u>Note</u>: (obs=) is an optional statement. It outputs a list of the number of observations specified. If not included, all observations in the dataset will be listed.

Example:

```
data chldata new;
     set chldata;
if bmi category = "Underweight" then bmi category new = "Underweight";
else if bmi category = "Healthy weight" then bmi category new = "Healthy";
else if bmi_category = "Overweight" then bmi category new = "OWOB";
else if bmi category = "Obese" then bmi category new = "OWOB";
if bmi category = "Healthy weight" then owob = 0;
else if bmi category = "Overweight" then bmi category new = 1;
else if bmi category = "Obese" then bmi category new = 1;
if sex = 1 then sex new = "Male";
else if sex = 2 then sex new = "Female";
if 24 =< agemos < 72 then agegroup = "2-5 years old";
else if 72 =< agemos < 108 then agegroup = "6-8 years old ";
run;
Proc Print data=chldata new (obs=10);
Var id bmi category bmi category new owob sex sex new agemos agegroup;
run:
```

"Proc Print" Output:

Obs	id	bmi_category	bmi_category_new	owob	sex	sex_new	agemos	agegroup
1	111001	Healthy weight	Healthy	0	2	Fema	53.2961	2-5 years old
2	111002	Healthy weight	Healthy	0	1	Male	95.4934	6-8 years old
3	111003	Healthy weight	Healthy	0	2	Fema	83.6908	6-8 years old
4	111004	Healthy weight	Healthy	0	1	Male	46.0658	2-5 years old
5	111005	Healthy weight	Healthy	0	1	Male	57.5263	2-5 years old
6	111006	Healthy weight	Healthy	0	2	Fema	71.2632	2-5 years old
7	111009	Healthy weight	Healthy	0	2	Fema	72.1645	6-8 years old
8	111010	Healthy weight	Healthy	0	1	Male	57.1645	2-5 years old
9	111011	Healthy weight	Healthy	0	1	Male	72.3947	6-8 years old
10	111012	Healthy weight	Healthy	0	1	Male	54.7566	2-5 years old

Other Dataset Procedures

```
Sorting Data
```

```
proc Sort data=DatasetName;
    by Variable;
run;
```

Merging Datasets

```
data MergedDatasetName;
    Merge DatasetName1 DatasetName2;
    by Variable;
```

run;

Note: Datasets must first be sorted by the variable you are merging by.

Removing duplicate observations

Add nodupkey to your code to remove duplicate values of specific variables.

```
proc sort data=DatasetName nodupkey out=NewDatasetName;
    by Variable;
run;
```

REVISED 10.14.2024

Frequency Procedures

Frequency Procedures or "Proc Freq" provide frequencies, i.e. counts and percent of data. This procedure is used with categorical variables, or variables that include categories or groups (e.g. sex, which includes categories of male and female).

Simple Frequencies

proc freq data=chldata; table bmi_category; run;

Note: You can list out as many variable names after table, which will output separate tables for each variable.

Output:

The SAS System

The FREQ Procedure

ANTHRO: BMI in 4 categories using CDC 2000 reference											
bmi_category	Frequency	Percent	Cumulative Frequency	Cumulative Percent							
Healthy weight	3739	68.91	3739	68.91							
Obese	774	14.26	4513	83.17							
Overweight	776	14.30	5289	97.48							
Underweight	137	2.52	5426	100.00							
Frequency Missing = 73											

Simple Cross Tabulation

Cross tabulations outputs a cross table of 2 variables of interest. The same **proc freq** statement is used, but includes a * between the 2 variables of interest.

proc freq data=chldata; table worldbank*income2; title "Income by World Bank for table 1"; run;

Note: Adding a title statement will include a title above your output table.

Output:

Income by World Bank for table 1

The FREQ Procedure

Frequency Percent Row Pct Col Pct		Table of wor	ldbank by income2						
	worldbank(World Income	income2(DEMO: Average an	ncome2(DEMO: Average annual houshold income in two categories (1= < \$35K, 2= \$35K))						
	Middle, High)	1	2	Total					
	high	1829	933	2762					
		42.67	21.77	64.44					
		66.22	33.78						
		55.76	92.74						
	lower middle	430	15	445					
		10.03	0.35	10.38					
		96.63	3.37						
		13.11	1.49						
	upper middle	1021	58	1079					
		23.82	1.35	25.17					
		94.62	5.38						
		31.13	5.77						
	Total	3280	1006	4286					
		76.53	23.47	100.00					
		Frequency Missing = 1213							

Complex Tabulation

Complex tabulations allow for cross tabulations of more than 2 variables.

proc tabulate data=chldata missing;

class sex agegrp race new omb jurisnum ; table ALL (sex agegrp race_new_omb)*(N colpctn), jurisnum(ALL); title 'Demographics Table - Sex, age group, Race/ethnicity'; run;

Output:

Demographics Table - Sex, ag	ge group	, Rac	e/ethn	icity									
					GENE	RAL: J	urisdic	tion nu	mber				All
		1	2	3	4	5	6	7	8	9	10	11	
All	Ν	190	199	855	903	191	188	188	214	968	938	<mark>66</mark> 5	5499
DEMO: Sex of the CHL subject													
1	Ν	102	93	445	476	106	92	104	88	508	450	350	2814
	ColPctN	53.68	46.73	52.05	52.71	55.50	48.94	55.32	41.12	52.48	47.97	52.63	51.17
2	Ν	88	106	410	427	85	96	84	126	460	488	315	2685
	ColPctN	46.32	53.27	47.95	47.29	44.50	51.06	44.68	58.88	47.52	52.03	47.37	48.83
ANTHRO: 2-category age group at anthropometry measures (1=2-5 yrs, 2=6-8 yrs)													
2-5 yrs	Ν	144	140	457	599	105	168	113	80	643	692	487	3628
	ColPctN	75.79	70.35	53.45	66.33	54.97	89.36	60.11	37.38	66.43	73.77	73.23	65.98
6-8 угs	Ν	46	59	398	304	86	20	75	134	325	246	178	1871
	ColPctN	24.21	29.65	46.55	33.67	45.03	10.64	39.89	62.62	33.57	26.23	26.77	34.02
DEMO: Child race following guidelines of US Office of Management and Budget (OMB) Definition													
	Ν	1	-	-	2	2				4	4	6	19
	ColPctN	0.53	-		0.22	1.05				0.41	0.43	0.90	0.35
AIAN	Ν										2	122	124
	ColPctN		-	-							0.21	18.35	2.25
Asian	Ν	6	2	80	302						90	5	485
	ColPctN	3.16	1.01	9.36	33.44						9.59	0.75	8.82
Black	Ν		-					1		1	1	13	16
	ColPctN		-					0.53		0.10	0.11	1.95	0.29
More than one race	Ν	35	6	117	146	22	19	14	23	35	503	172	1092
	ColPctN	18.42	3.02	13.68	16.17	11.52	10.11	7.45	10.75	3.62	53.62	25.86	19.86
NHPI	Ν	148	191	652	450	167	169	173	191	928	270	6	3345
	ColPctN	77.89	95.98	76.26	49.83	87.43	89.89	92.02	89.25	95.87	28.78	0.90	60.83
White	Ν		-	6	3						68	341	418
	ColPctN		-	0.70	0.33						7.25	51.28	7.60

Means Procedures

Simple Means

Use the code below to obtain the mean of continuous variables. You can add many variables to after var to get means of all variables stated.

Output:

Total averages of macronutrients

The MEANS Procedure

Variable	Label	N	Mean	Std Dev	Minimum	Maximum
carbohydrate_adjForVar_WTMN	FOODLOG Intake for weighted mean across days: Carbohydrate in g, adjusted for within person variance	3529	235.2379859	72.7096414	44.3717940	634.7956812
dietaryfiber_adjForVar_WTMN	FOODLOG Intake for weighted mean across days: Dietary Fiber in g, adjusted for within person variance	3529	10.0162430	4.9121329	0.3263891	44.9461291
protein_adjForVar_WTMN	FOODLOG Intake for weighted mean across days: Protein in g, adjusted for within person variance	3529	67.5018750	18.5412207	11.2731005	153.2901749
totalfat_adjForVar_WTMN	FOODLOG Intake for weighted mean across days: Total Fat in g, adjusted for within person variance	3529	62.1630656	20.1460062	6.5308032	169.0512017

Means by specific groups & adjusting for jurisdiction strata & community cluster

Note: Adding to the statement std includes the Standard Error of the Mean, stderr includes the Standard Error of Sum, and clm includes the 95% confident limits for the mean in the output statement. Other statements can also be included such as max min median mode.

Output:

Total averages by agegroup

The SURVEYMEANS Procedure

	Statistics for agegrp Domains											
agegrp	Variable	Label	Mean	Std Error of Mean	95% CL	Std Error of Sum						
2-5 yrs	carbohydrate_adjForVar_WTMN	FOODLOG Intake for weighted mean across days: Carbohydrate in g, adjusted for within person variance	224.943449	3.306968	217.850708	232.036190	44323					
	dietaryfiber_adjForVar_WTMN	FOODLOG Intake for weighted mean across days: Dietary Fiber in g, adjusted for within person variance	9.336849	0.283940	8.727858	9.945840	2093.369378					
	protein_adjForVar_WTMN	FOODLOG Intake for weighted mean across days: Protein in g, adjusted for within person variance	64.039844	0.660354	62.623527	65.456162	12530					
	totalfat_adjForVar_WTMN	FOODLOG Intake for weighted mean across days: Total Fat in g, adjusted for within person variance	58.072946	0.739802	56.486229	59.659662	11984					
6-8 yrs	carbohydrate_adjForVar_WTMN	FOODLOG Intake for weighted mean across days: Carbohydrate in g, adjusted for within person variance	246.809731	4.087420	238.043088	255.576375	34501					
	dietaryfiber_adjForVar_WTMN	FOODLOG Intake for weighted mean across days: Dietary Fiber in g, adjusted for within person variance	10.584936	0.371781	9.787545	11.382326	1654.049881					
	protein_adjForVar_WTMN	FOODLOG Intake for weighted mean across days: Protein in g, adjusted for within person variance	72.533541	0.944180	70.508476	74.558606	10502					
	totalfat_adjForVar_WTMN	FOODLOG Intake for weighted mean across days: Total Fat in g, adjusted for within person variance	66.979681	0.973409	64.891927	69.067435	9719.492217					

Statistical Procedures

Chi Square Test

Chi Square test is a statistical test to see whether there is a significant difference in the percent between categories/groups of categorical variables.

```
proc freq data=chldata;
table sex*bmi_category / chisq;
title "Chi Square Test of BMI categories between males & females";
run;
```

Output:

Frequency Percent Row Pct Col Pct		Table of sex by bmi_category												
	sex(DEMO: Sex of	bmi_catego	bmi_category(ANTHRO: BMI in 4 categories using CDC 2000 reference)											
	the CHL subject)	Healthy weight	Obese	Overweight	Underweight	Total								
	1	1851	457	389	72	2769								
		34.11	8.42	7.17	1.33	51.03								
		66.85	16.50	14.05	2.60									
		49.51	59.04	50.13	52.55									
	2	1888	317	387	65	2657								
		34.80	5.84	7.13	1.20	48.97								
		71.06	11.93	14.57	2.45									
		50.49	40.96	49.87	47.45									
	Total	3739	774	776	137	5426								
		68.91	14.26	14.30	2.52	100.00								
		Frequer	ncy Missi	ng = 73										

Chi Square Test of BMI categories between males & females The FREQ Procedure

Statistics for Table of sex by bmi_category

Statistic	DF	Value	Prob
Chi-Square	3	23.7502	<.0001
Likelihood Ratio Chi-Square	3	23.8800	<.0001
Mantel-Haenszel Chi-Square	1	3.1568	0.0756
Phi Coefficient		0.0662	
Contingency Coefficient		0.0660	
Cramer's V		0.0662	

Sample Size = 5426 Frequency Missing = 73

T Test

T test is a statistical test to see if there is a significant difference between the means of a continuous variable by a categorical variable with only 2 categories/groups (e.g., sex, which only has 2 groups – male or female).

```
proc ttest data=chldata;
var carbohydrate_adjForVar_WTMN;
class sex;
title "t test of mean carbohydrate intake by sex";
run;
```

Output:

		t test of	mea	n ca	rboh	ydrate	e in	take l	by se	x		
			-	The T	TEST	Proced	lure					
Variable: carbohydrate_adjForVar	_WTMN (F	OODLOG Intak	e for	weig	hted n	nean a	сгоз	ss days	: Car	bohyd	rate in g, ac	djusted for within person variance)
	sex	Method	N	M	ean	Std De	v S	Std Err	Mini	mum	Maximum	
	1		1798	8 2	40.4	73.290	9 ·	1.7284	66	.8758	634.8	
	2		1731	2	29.8	71.725	7	1.7240	44	.3718	537.3	_
	Diff (1-2)	Pooled		10.	5760	72.527	4 2	2.4422				_
	Diff (1-2)	Satterthwaite		10.	5760		2	2.4412				
1												
	sex	Method	N	lean	95%	CL Me	an	Std [Dev 9	95% CL	Std Dev	
	1		2	240.4	237.	0 24	43.8	73.2	909 7	70.9713	75.7684	
	2		2	229.8	226.	5 2	33.2	71.7	257 6	<u>59.4136</u>	6 74.1983	
	Diff (1-2)	Pooled	10.	5760	5.787	7 15.3	643	72.5	274 7	70.8738	74.2605	
	Diff (1-2)	Satterthwaite	10.	5760	5.789	7 15.3	624					
		Method		Varia	ances	DI	t	Value	Pr >	 t 		
		Pooled		Equa	I	352	7	4.33	<.00	01		
		Satterthwa	aite	Uneq	ual	3526.	1	4.33	<.00	01		
				_								
				Equal	ity of	Varian	ces			_		
		Method	N	um D	F Dei	n DF	Va	lue F	°r > F			
		Folded	F	179	7	1730	1	1.04 0	.3650			

<u>Note</u>: Output will also present histogram plot and q-q plots of continuous variable disaggregated by categorical groups, which is not shown here.

ANOVA Test or Simple Linear Regression

ANOVA test is a statistical test to see if there is a significant difference between the means of a continuous variable by a categorical variable with more than 2 categories/groups.

ANOVA test is the simplest form of a general linear model (glm), so either **proc anova** Or **proc glm** can be used.

```
proc anova data=chldata_new;
class bmi_category ;
model carbohydrate_adjForVar_WTMN = bmi_category;
title "ANOVA test of mean carbohydrate intake by BMI category";
run;
proc glm data=chldata_new;
class bmi_category ;
model carbohydrate_adjForVar_WTMN = bmi_category;
title "ANOVA test of mean carbohydrate intake by BMI category";
run;
```

Output:

ANOVA test of mean carbohydrate intake by BMI category

The ANOVA Procedure

Dependent Variable: carbohydrate_adjForVar_WTMN FOODLOG Intake for weighted mean across days: Carbohydrate in g, adjusted for within person variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	160745.05	53581.68	10.26	<.0001
Error	3476	18144964.47	5220.07		
Corrected Total	3479	18305709.52			

 R-Square
 Coeff Var
 Root MSE
 carbohydrate_adjForVar_WTMN Mean

 0.008781
 30.69114
 72.25005
 235.4101

Source	DF	Anova SS	Mean Square	F Value	Pr > F
bmi_category	3	160745.0531	53581.6844	10.26	<.0001

General Linear Regression Models

Multiple Linear Regression

Multiple Linear Regression models test the association between multiple independent variables and a dependent variable, which must be continuous and have a normal distribution.

```
proc glm data=chldata;
class race_new_omb sex;
model carbohydrate_adjForVar_WTMN = race_new_omb agemos sex / solution;
title "Multiple linear regression model testing association between
race/ethnicity & carbohydrate intake, adjusting for age & sex";
run;
```

Output:

Multiple linear regression model testing association between race/ethnicity & carbohydrate intake, adjusting for age & sex

The GLM Procedure

Dependent Variable: carbohydrate_adjForVar_WTMN FOODLOG Intake for weighted mean across days: Carbohydrate in g, adjusted for within person variance

	So	ource			DF	Sum of	Squares Mean Square F V			F Val	ue	Pr >	F			
	Model 7			1143296.53			163328.08		32.87		<.00	01				
	Er	ror		35	08	174	30821	.84			4968.	88				
	Co	mected	Total	35	15	185	741 18	.37								
	_	-	-				_			_						
	R-	Square	Coef	f Va	ar	Root MS	E car	bol	iydra	ate_	_adjF	or\	/ar_W	TMN	1 Mea	an
	0	.061553	29.9	691	2	70.4902	6							23	35.28	32
		Source			DF	Туре	e I SS	M	ean	Squ	iare	F١	Value	Pr	r> F	
		race_ne	ew_on	nb	ŧ	5 531587	7.9121		1063	17.8	5824		21.40	<.0	0001	
		agemo	s		1	501632	2.92.24	-	5016	32.9	224	1	100.95	<.(0001	
		sex			1	110075	5.7001		1100	75.7	7001	1 22.15			0001	
		Source	e DF Type III SS Mean Square F Va		Value	Pr	r> F									
		race_ne	ew_on	nb	ŧ	5 447426	3.0809		894	85.2	2162		18.01	<.0	0001	
		agemo	s		1	504441	1.0164		5044	41.0	0164	1	101.52	<.0	0001	
		sex			1	110075	5.7001		110075.7001				22.15	<.0	0001	
ara	ime	eter					E	Estimate		5	otar	Error	t Va	alue	Pr	
nter	œ	ot					169.6	169.625537		в	6.15352007		52007	2	7.57	<.(
ace	ce_new_omb AIAN				14.9721343		1343	в	14.64311997		1997		1.02	0.3		
ace	ce_new_omb Asian				3.1315536			в	6.51512181				0.48	0.0		
ace	_ne	w_omb	Black				-9.7	-9.7382539		в	25.384281		8122		0.38	0.3
ace new omb More than one race				4.9	838	3193	в	5.5	573	31945		0.90	0.:			

|--|

27.5860158 B 5.06153347

11.2022086 B 2.38005541

0.06027050

0.0000000 B 0.6072687

0.0000000 B

5.45 <.0001

10.08 <.0001

4.71 <.0001

race_new_omb NHPI

race_new_omb White

agemos sex 1

sex 2

Multiple Linear Regression accounting for CHL complex sample design

Multiple Linear Regression model below accounts for the CHL complex sample design and adjusts for the jurisdiction strata and community cluster.

```
proc surveyreg data=chldata;
class race_new_omb sex;
model carbohydrate_adjForVar_WTMN = race_new_omb agemos sex / solution;
weight wt_anthro_adj;
strata jurisnum ;
cluster community_cluster;
title "Multiple linear regression model testing association between race/ethnicity &
carbohydrate intake, adjusting for age & sex, accounting for complex sample design";
run;
```

Output:

agemos	1	57.99	<.0001
sex	1	51.97	<.0001

Note: The denominator degrees of freedom for the F tests is 19.

Estimated Regression Coefficients									
Parameter	Estimate	Standard Error	t Value	Pr > t					
Intercept	169.625537	6.8656171	24.71	<.0001					
race_new_omb AIAN	14.972134	43.2790664	0.35	0.7332					
race_new_omb Asian	3.131554	6.1568833	0.51	0.6169					
race_new_omb Black	-9.738254	13.7082554	-0.71	0.4860					
race_new_omb More than one race	4.983819	5.5479890	0.90	0.3803					
race_new_omb NHPI	27.588016	7.4028330	3.73	0.0014					
race_new_omb White	0.000000	0.0000000							
agemos	0.607269	0.0797487	7.61	<.0001					
sex 1	11.202209	1.5539234	7.21	<.0001					
sex 2	0.000000	0.0000000							

Logistic Regression Models

Multiple Logistic Regression

Multiple Logistic Regression models test the association between multiple independent variables and a dependent variable, which must be binary (i.e., only 2 groups).

Program below provides both beta coefficient estimates and odds ratios.

```
proc logistic data=chldata;
class race_new_omb (ref="White") sex (ref="1") / param = ref;
model owob (event="1") = race_new_omb agemos sex;
title "Multiple logistic regression model testing association between
race/ethnicity & overweight/obesity, adjusting for age & sex";
run;
```

Output:

ultiple legistic regression model testing	according to a botwoon a	mooloth nicity 9 o	wonwoig ht/o booity	adjucting for ago	9 0 0 V
uluple logistic regression model testing	association between i	a_{ce}	verweig nuo besity.	auju sulių ivi aue	o Sex

The LOGISTIC Procedure

Model Information								
WORK.CHLDATA_NEW								
owob	ANTHRO: Overweight or Obesity based >= 85th percentile for CDC growth curves (0=No, 1=Yes)							
2								
binary logit								
Fisher's scoring								
	WORK.CHLDATA_NEW owob 2 binary logit Fisher's scoring							

mber of Observations Used 5									
Res	ponsel	Profile							
Ordered Value	Ordered Total Value owob Frequency								
1	0	386	0						
2	1	154	7						

Number of Observations Read 5499

N

Probability modeled is owob=1.

Class Level Information									
Class Value Design Var									
race_new_omb	AIAN	1	0	0	0	C			
	Asian	0	1	0	0	C			
	Black	0	0	1	0	C			
	More than one race	0	0	0	1	C			
	NHPI	0	0	0	0	1			
	White	0	0	0	0	C			
9ex	1	0							
	2	1							

Model Convergence Status
onvergence criterion (GCONV=1E-8) satisfied.

С

	Model Fit Statis	stics
Criterion	Intercept Only	Intercept and Covariates
AIC	6475.610	6450.003
SC	6482.206	6502.787
-2 Log L	6473.610	6434.003

Testing Global Null Hypothesis: BETA=0							
Test	Chi-Square	DF	Pr > ChiSq				
Likelihood Ratio	39.6072	7	<.0001				
Score	42.0019	7	<.0001				
Wald	39.7028	7	<.0001				

Туре	Type 3 Analysis of Effects									
Effect	DF	Wald Chi-Square	Pr > ChiSq							
race_new_omb	5	25.6951	0.0001							
agemos	1	3.6436	0.0563							
9ex	1	11.8298	0.0008							

	Analysis of Maximum Likelihood Estimates									
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq				
Intercept		1	-1.0163	0.1457	48.6333	<.0001				
race_new_omb	AIAN	1	0.7640	0.2134	12.8171	0.0003				
race_new_omb	Asian	1	-0.0566	0.1501	0.1422	0.7061				
race_new_omb	Black	1	1.4608	0.5286	7.6380	0.0057				
race_new_omb	More than one race	1	-0.0190	0.1293	0.0216	0.8833				
race_new_omb	NHPI	1	-0.00948	0.1169	0.0085	0.9355				
agemos		1	0.00296	0.00155	3.6436	0.0563				
sex (2	1	-0.2084	0.0606	11.8298	0.0008				

Odds Ratio Estimates							
Effect	Point Estimate	95% Confider	Wald nce Limits				
race_new_omb AIAN vsWhite	2.147	1.413	3.262				
race_new_omb Asian vsWhite	0.945	0.704	1.268				
race_new_omb Black vsWhite	4.310	1.529	12.144				
race_new_omb More than one race vsWhite	0.981	0.761	1.264				
race_new_omb NHPI vsWhite	0.991	0.788	1.246				
agemos	1.003	1.000	1.008				
sex 2 vs 1	0.812	0.721	0.914				

Associa	ation of Predicte R	ed Probabi esponses	lities and Ob	served
Percen	t Concordant	54.1	Somers D	0.082
Percen	t Discordant	45.9	Gamma	0.082
Percen	t Tied	0.0	Tau-a	0.034
Pairs		5971420	c	0.541

Multiple Logistic Regression accounting for CHL complex sample design

Multiple Logistic Regression models below accounts for the CHL complex sample design and adjusts for the jurisdiction strata and community cluster.

Program below provides both beta coefficient estimates and odds ratios.

```
proc surveylogistic data = chldata_new;
class race_new_omb (ref="White") sex / param = ref;
model owob (event="1") = race_new_omb agemos sex;
weight wt_anthro_adj;
strata jurisnum ;
cluster community_cluster;
title "Multiple logistic regression model testing association between
race/ethnicity & overweight/obesity, adjusting for age & sex, accouting for
complex sample design";
run;
```

Output:

Multiple logistic regres	ultiple logistic regression model testing association between race/ethnicity & overweight/obesity, adjusting for age & sex, accouting for complex sample design							
			The SURVEYLO	GISTIC Procedure				
	Model Information							
Data Set	WORK.CHLDATA							
Response Variable	owob	ANTHRO: Overweight	or Obesity based >= 85	th percentile for CDC growth	n curves (0=No, 1=Yes)			
lumber of Response Levels 2								
Stratum Variable	tratum Variable juris num GENERAL: Juris diction number							
Number of Strata	Number of Strata 11							
Cluster Variable	community_cluster	GENERAL: Communi	ity for cluster analysis					
Number of Clusters	33							
Weight Variable	wt_anthro_adj	GENERAL: Sampling	weight for each child bas	sed on the population of chi	Idren at each community and adjusted so that the sum of weights = sample size.			
Model	Binary Logit							
Optimization Technique	Fisher's Scoring							
Variance Adjustment	Degrees of Freedom (DF)							
			Variance Method Variance Adjustment	Estimation Taylor Series Degrees of Freedom (DF)				

Number of Observations Read

Number of Observations Used

Sum of Weights Read Sum of Weights Used

Ordered

1 0

Response Profile Total

Value owob Frequency Weight

2 1 1547 1525.9130 Probability modeled is owob=1.

3860 3868.2416

5499

5407

Total

5484.646 5394.155

	Class Level Informati	on						
Class Value Design Variable								
race_new_omb	AIAN	1	0	0	0	0		
	Asian	0	1	0	0	0		
	Black	0	0	1	0	0		
	More than one race	0	0	0	1	0		
	NHPI	0	0	0	0	1		
	White	0	0	0	0	0		
sex	1	0						
	2	1						

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

	Model Fit Statis	stics
Criterion	Intercept Only	Intercept and Covariates
AIC	6428.114	6390.635
SC	6434.707	6443.379
-2 Log L	6426.114	6374.635

Testing Global Null Hypothesis: BETA=0								
Test	F Value	Num DF	Den DF	Pr > F				
Likelihood Ratio	5.45	3.1098	68.4117	0.0018				
Score	4.67	7	16	0.0051				
Wald	23.08	7	16	<.0001				

NOTE: Second-order Rao-Scott design correction 1.2511 applied to the Likelihood Ratio test.

Туј	Type 3 Analysis of Effect Effect F Value Num DF Den DF Pr > F ace_new_omb 34.98 5 18 <.0001 agemos 1.51 1 22 0.2319				
Effect	F Value	Num DF	Den DF	Pr≥F	
race_new_omb	34.98	5	18	<.0001	
agemos	1.51	1	22	0.2319	
sex.	11.58	1	22	0.0026	

Analysis of Maximum Likelihood Estimates									
	Estimate	Standard Error	t Value	Pr > t					
	-1.2304	0.3388	-3.63	0.0015					
AIAN	0.9620	0.2160	4.45	0.0002					
Asian	0.2180	0.1951	1.12	0.2758					
Black	1.6920	0.3230	5.24	<.0001					
More than one race	0.2096	0.2273	0.92	0.3663					
NHPI	0.1619	0.1916	0.85	0.4072					
	0.00314	0.00255	1.23	0.2319					
2	-0.2155	0.0633	-3.40	0.0026					
	Analysis of Maximum AIAN Asian Black More than one race NHPI 2	Analysis of Maximum LikelihoodEstimate-1.2304AIAN0.9620Asian0.2180Black1.6920More than one race0.2098NHPI0.16192	Analysis of Maximum Likelihoot EstimatesEstimateStandard Error1.23040.3388AIAN0.96200.2160Asian0.21800.1951Black1.69200.3230More than one race0.20960.2273NHPI0.16190.19162-0.21550.0833	Analysis of Maximum Likelihood EstimateEstimateStandard Errort Value-1.23040.3388-3.63AIAN0.96200.21604.45Asian0.21800.19511.12Black1.69200.32305.24More than one race0.20980.22730.92NHPI0.16190.19160.852-0.21550.0833-3.40					

NOTE: The degrees of freedom for the t tests is 22.

Odds Ratio E	Odds Ratio Estimates				
Effect	Point Estimate	95% Confidence Limits			
race_new_omb AIAN vs White	2.617	1.672	4.098		
race_new_omb Asian vs White	1.244	0.830	1.864		
race_new_omb Black vs White	5.430	2.779	10.611		
race_new_omb More than one race vs White	1.233	0.770	1.978		
race_new_omb NHPI vs White	1.176	0.790	1.749		
agemos	1.003	0.998	1.008		
sex 2 vs 1	0.806	0.707	0.919		

NOTE: The degrees of freedom in computing the confidence limits is 22.

Association of Predicted Probabilities and Observed Responses				
Percent Concordant	52.9	Somers' D	0.078	
Percent Discordant	45.1	Gamma	0.080	
Percent Tied	2.0	Tau-a	0.032	
Pairs	5971420	c	0.539	

Additional Support

For additional support on SAS programming, many online resources are available including:

SAS Help Center

UCLA Statistical Methods and Data Analytics

SAS Support Community

Searching on Google or asking ChapGPT are also helpful resources for SAS.

The CHL Data Center can also assist with your analysis. Submit a <u>Service Request</u> for consultation with an analyst.